Bone marrow mesenchymal stem cell-derived exosomal miR-21 protects C-kit+ cardiac stem cells from oxidative injury through the PTEN/PI3K/Akt axis

نویسندگان

  • Bei Shi
  • Yan Wang
  • Ranzhun Zhao
  • Xianping Long
  • Wenwen Deng
  • Zhenglong Wang
چکیده

Stem cell (SC) therapy for ischemic cardiomyopathy is hampered by poor survival of the implanted cells. Recently, SC-derived exosomes have been shown to facilitate cell proliferation and survival by transporting various proteins and non-coding RNAs (such as microRNAs and lncRNAs). In this study, miR-21 was highly enriched in exosomes derived from bone marrow mesenchymal stem cells (MSCs). Interestingly, exosomes collected from hydrogen peroxide (H2O2)-treated MSCs (H-Exo) contained higher levels of miR-21 than exosomes released from MSCs under normal conditions (N-Exo). The pre-treatment of C-kit+ cardiac stem cells (CSCs) with H-Exos resulted in significantly increased levels of miR-21 and phosphor-Akt (pAkt) and decreased levels of PTEN, which is a known target of miR-21. AnnexinV-FITC/PI analysis further demonstrated that the degree of oxidative stress-induced apoptosis was markedly lower in H-Exo-treated C-kit+ CSCs than that in N-Exo-treated cells. These protective effects could be blocked by both a miR-21 inhibitor and the PI3K/Akt inhibitor LY294002. Therefore, exosomal miR-21 derived from H2O2-treated MSCs could be transported to C-kit+ cardiac stem cells to functionally inhibit PTEN expression, thereby activating PI3K/AKT signaling and leading to protection against oxidative stress-triggered cell death. Thus, exosomes derived from MSCs could be used as a new therapeutic vehicle to facilitate C-kit+ CSC therapies in the ischemic myocardium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

miR-21 Reduces Hydrogen Peroxide-Induced Apoptosis in c-kit+ Cardiac Stem Cells In Vitro through PTEN/PI3K/Akt Signaling

The low survival rate of cardiac stem cells (CSCs) in the infarcted myocardium hampers cell therapy for ischemic cardiomyopathy. MicroRNA-21 (miR-21) and one of its target proteins, PTEN, contribute to the survival and proliferation of many cell types, but their prosurvival effects in c-kit+ CSC remain unclear. Thus, we hypothesized that miR-21 reduces hydrogen peroxide- (H2O2-) induced apoptos...

متن کامل

miR-21 increases c-kit+ cardiac stem cell proliferation in vitro through PTEN/PI3K/Akt signaling

The low survival rate of cardiac stem cells (CSCs) in the ischemic myocardium is one of the obstacles in ischemic cardiomyopathy cell therapy. The MicroRNA (miR)-21 and one of its target protein, the tensin homolog deleted on chromosome ten (PTEN), contributes to the proliferation of many kinds of tissues and cell types. It is reported that miR-21 promotes proliferation through PTEN/PI3K/Akt pa...

متن کامل

Enhanced Cardioprotection by Human Endometrium Mesenchymal Stem Cells Driven by Exosomal MicroRNA‐21

Our group recently reported positive therapeutic benefit of human endometrium-derived mesenchymal stem cells (EnMSCs) delivered to infarcted rat myocardium, an effect that correlated with enhanced secretion of protective cytokines and growth factors compared with parallel cultures of human bone marrow MSCs (BMMSCs). To define more precisely the molecular mechanisms of EnMSC therapy, in the pres...

متن کامل

The protective effect of bone marrow-derived mesenchymal stem cells in liver ischemia/reperfusion injury via down-regulation of miR-370

Objective(s): Liver transplantation is the most important therapy for end-stage liver disease and ischemia reperfusion (I/R) injury is indeed a risk factor for hepatic failure after grafting. The role of miRNAs in I/R is not completely understood. The aim of this study was to investigate the potential protective role of the mesenchymal stem cells (MSCs) and ischemic pr...

متن کامل

Mesenchymal stem cells deliver exogenous miR‐21 via exosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration

Although mesenchymal stem cells (MSCs) transplantation into the IVD (intervertebral disc) may be beneficial in inhibiting apoptosis of nucleus pulposus cells (NPCs) and alleviating IVD degeneration, the underlying mechanism of this therapeutic process has not been fully explained. The purpose of this study was to explore the protective effect of MSC-derived exosomes (MSC-exosomes) on NPC apopto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2018